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\ Shape of Asteroid 4769 Cktalia (1989 PB) from Inversion of Radar Images

R. Scott IIudson  and Steven J. Ostro  ●

hversion of previously reported, delay-Doppler im-
ages of Castalia yields a lt37-paran~eter, t llree-
dimensional shape model that is bifurcated into two
distinct, irregular, kilon~eter-sized lobes. ‘J%e crevice
that separates the lobes has an average depth of be-
tween 100 and 150 meters and is oriented roughly pcx-
pcndicular  to the asteroid’s longest dimension. The
constrained-least-squares reconstruction method in-
troduced here can be used to determine the shape,
spin vector, and radar scattering properties of any as-
teroid or comet for which delay-Doppler images pro-
vide suflicicmt  signal-to-noise ratio, oricntational cov-
cragc, and spatial resolution.

Radar observations can resolve Earth-crossing asteroids
(ECAS) by measuring the distribution of echo power in time
delay (range) and Doppler frequency: planes normal to the
line of sight cut the target into range cells and, for a rigid tar-
get, planes parallel to both the line of sight and the target’s
apparent spin vector (1) cut the target into Doppler-frequency
cells (2). Hence a delay-Doppler image can be visualized as
the projection of the target’s radar brig}ltness onto a plane
that contains the radar and is normal to the constant-delay,
constant-Doppler lines. Each of those lines can intersect two
or more noncontiguous points on the target, therefore, parts
of the image can represent a many-toone  mapping, i.e., can
be “north/south ambiguous.” Moreover, the length equiva-
lent of frequency in radar images is a function of the target’s
apparent spin vector, which may be poorly known. Accurate
interpretation of ECA radar images consequently is nontriv-
ial and usually requires multiple images that sample diverse
orientations of the target.

Radar observations (9) of 4769 Castalia (formerly 1989 PB)
yielded useful resolution and definition of this ECA’S shape:
a 2.5-h sequence of 64 images resolved the echo into a few
dozen cells and revealed a bimodal distribution of echo power,
Visual inspection along with analysis of the echoes’ franm-
t-frame bandwidth variation implied that Castalia is bifur-
cated into two kilometer-sized lobes apparently in contact
with each other (9). In this Report wc describe an estimation
of Castalia’s three-dimensional shape from the delay-Doppler
images.

Each of the 64 images in our data set  (9) is the result of
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a 29-s integration and consists of an estimate of radar cross
section o as a function of time delay ~ and Doppler frequency
v. The length equivalent of the 2-/1s interval between time
samples is 300 m. ‘I’he length equivalent of the frequency-
sarnpling  interval, AW = 0.95 Rz, is

Ax = AvPA/4rrcos b , (1)

with P the apparent rotation period, A the wavelength (0.126
m), and 6 the subradar latitude (measured from the asstcroid’s
equatorial plane to the radar line of sight). For the estimated
period, 4.07 ~ 0.02 h, (9), the 64-frame sequence covers 220°
of rotation phase @; each image spans A~ = 0.7°. Since the
asteroid’s position on the sky changed by less than 10 during
the entire imaging sequence, the contribution of that angular
motion to the apparent rotation is negligible. We therefore
assume  that 6 was constant throughout the sequence. Our
shape reconstruction treated both 6 and P as free parameters.

We employed two shape models: a “one-component” model
and a “two-component” model. The one-component model
has a surface S defined by

S = {r Ir = r(O, ~)[sin L9 cos~,  sin flsin ~, cos O)} (2)

for O< 0<rr,0~~<2n, where

r(f), fj) = ~ {a,oP}(coso)
1=0

I

k+  ~ [% cos(m+)  + k sin(m4)]P~(cos  0) 3 )
Sn=l J

is a spherical harmonic series having (L + 1)2 “shape pa-
rameters” Oln,, bjn, (~). The surface S of a tw~cornponent
model is the union of the surfaces of two one-component
models: S = S1 U S 2 ,  whe re  Si = {r lr = ri - roi} and
r i = ri(O, ~)[sin6c os~, sinOsin#, cosO]  for i = 1,2. The ra-
dius functions rl (t?, #) and r2(0, #) each have their own spher-
ical harmonic series, and rol and ro2 are the corresponding
centers of the individual components.

We modeled the delay -flopp]er  data set as

Here I(r) is unity if the point r is illuminated by the radar
or zero otherwise, and hr and hv are the time and frequency
impulse-response functions. The angular scattering law cro(r),
defined so uo(r)  dS is the radar cross section of a surface ele-
ment dS at r, is assumed to have the form:

uo(r)  = pcosn i(r) , (5)



. where i(r) is the angle  of incidence, n measurea  the specularity
of the mrrface,  and p describes the radar brightness of the

4 rwrfate  at normal incidence (i = O). In addition we used:
64 factors to permit recalibration of each frame’sb rightness
scale, which had relied on an empirical function describing
thesensitivity  oftlle Arecibo  telescope, 64 delay-registration
parameters to compensate for small, random, frame-to-frame
shifts in the sampling time base, and a frequency offset to
correct the a priori Doppler ephemeris.

!J%e accuracy of any shape model derived from the Crrstalia
data is limited by the fact that only one subradar latitude is
sampled. If our view were too close to equatorial (6 N 0°)
the reconstruction would be north/south ambiguous, whereas
if 161 were at least a few tens of degrees (M appears to be
the case  here), then the rotational phase coverage would pro-
vide sufficient geometric leverage to overcome N/S ambigui-
ties (5), but the polar region opposite the radar-facing pole
would have been unseen and hence poorly constrained. More
generally, the data might support relatively high-resolution
(large-L) reconstruction of some regions of the surface (where
the backscattering is strong or which contribute to many
frames) but not in others. We have chosen to use the highest-
resolution (largest-L) model  we felt was both computation-
ally practical and adequate to ensure reliable reconstruction
of well-imaged regions, and then to use penalty functions, de-
scribed below, to suppress surface features that do not seem
to be required by the observations. We settled on L = 12,
or 169 shape parameters, for the one-component model and
L = 8, or 2(8 + 1)2 + 5 = 167 shape parameters, for the
twc-component model (6). The total nurnbcrs  of free param-
eters in the one- and two-component models were 300 and
298, respectively.

Because parts of the asteroid are not well constrained by
the observations, we cannot test hypot}lescs that involve the
object’s internal density distribution or rotational stability.
‘J’o ensure plausible extrapolation of the reconstructed surface
into unconstrained regions, we assumed uniform density and
principal-axis rotation.

We treated the reconstruction process by minimizing an
objective function @(p) using Powell’s method (?) to estimate
the free parameters p. We took

X2(P) = )J%J(L ~; i’) – d~,  ~; i’)12/& (7)

dmcribcs  the goodness-of-flt between observed and modeled
data. The variance s~vv of pixel rr@  includes contributions
from receiver noise and echo self noise.

‘J’hc “penalty functions” A(p), B(p), C(p), D(p) are de-
fined as follows. A(p) is the square of the distance be-
tween the model’s centroid  and its spin axis. l?(p) is the
square of the sine of the angle ~ between the spin axis and
the model’s principle axis of the greatest inertia, Making
/?~ and fln large forces A(p) and B(p) to be small, pro-
ducing a dynamically plausible model under the assumption
of uniform density. C(p) is a concavity penalty given by
C(I))  = ~~ U[~~,  (r)]&(r) dS with U the unit step function

and Km(r)  the maximum surface curvature (8) at point r,
Since Km(r) >0 at a concavity, the integral is zero for a con-
vex model, exceeds zero if any concavities exist, and increaxs
as concavities become more prominent. D(p), a proximity
penalty applicable only to tw~component  models, is the re-
ciprocal of the distance between the components’ centroids.
Increasing @c suppresses concavities, and increasing ~~ forces
the two components apart.

We obtained approximate values for the non-shape paran-i-
eters  from a biaxial ellipsoid fit to the data, used them to
initialize the one-component model, and then sought a least-
squares solution for the full parameter vector. The penalty
factors PA and ~B were set ]arge enough to keep y from ex-
ceeding a few degrees and to keep the centroid  within a few
tens of meters of the spin axis, and the concavity penalty
factor PC was set low enough to avoid any noticeable effect
on the fits. This process yielded frame-t~frame calibration
corrections of order 10$%0 and delay registration corrections of
order 0.5 /1s, in each case consistent with a priori expectations
about the performance of the Arecibo  radar system (9). As an
example of the model’s sensitivity to a non-shape parameter,
Fig. l(A) plots postfit  X2 vs. values of the subradar latitude
161 at 5° intervals.

The one-component estimations yielded distinctly non-
ellipsoidal shapes with a variety of concavities, notably a
crevice, or waist, that encircles the middle of the body and is
roughly perpendicular to the body’s longest dimension. Fig-
ures I(B)  and 2(A) show how Xz and the model’s shape de-
pend on the concavity penalty factor /?c, that is, on how
strongly concavities are penalized. Penalizing concavities by
increasing PC to 5 almost eliminates the waist, but causes
a severe increase in X2. We conclude that the waist is re-
quired to fit the data; Castalia is distinctly bifurcated into
two lobes. We take the ~c = 4, one-component model to
represent a lower bound on the asteroid’s bifurcation.

To place an upper bound on the severity of the bifurcation,
we used a two-component model and studied the dependence
of shape and X2 on the proximity penalty factor /?D. The
two-component parameter set and the penalty factors (@,4,
BB, Bc) were initialized with valu~ from the 8C = 4 one-
cornponent model. However, here the concavity penalty func-
tion C(p) was defined as the sum of integrals for each com-
ponent, so it received no contribution from the waist, whose
evolution was then independent of /?c (10). Figures 1(C) and
2(}))  show how X2 and the shape depend on fl~, i.e., on how
strongly the component centroids are forced apart. At /?D = 6
the components are barely in contact, but X2 has increased
dramatically. We conclude that substantial contact between
the components is required to explain the data and we take
the ~~ = 5.4, two-component model to represent an upper
bound on the severity of Casta}ia’s  bifurcation.

We adopt the ~D = 4, two-component model as a nom-
inal working model of the asteroid, The root-rcduced-chi-
square goodness-of-fit statistic, RRC = [X,2/(N~  – NP)]112,
with Nd = 5824 the number of observed data and lVP = 298
the number of free parameters, calculated over 2-kn~ by 2-km
frames, is 1.5. This value of RRC might bc interpreted to
mean that the rnodcling  is incomplete (e.g., L may be too
small) or inaccurate (e.g., the assumed scattering law may
bc simplistic). However, the formal probabilistic intcrpreta-



tion of this statistic in linear lead-squares estimation is not
applicable here, because of extreme n~nlinearity  of the math-
ematical  model and also because of the difficulty of quantify-
ing the effective increme  in the number of degrees of freedom
(~d - IVP)  that is caused by use of the penalty  functions,
especially C(p) and D(p) (1~).

Nonetheless, we were concerned that our assumption of a
uniform scattering law (Eqn.  5) may have been overly restric-
tive. TO test for the presence of variations in reflectivity p
and specularity  n, we explored one-component models that
allowed both parameters to be functions of surface location,
by expanding each in its own L = 8 spherical harmonic. se-
ries. The estimation, which involved 160 ncw parameters, did
not reduce RRC and hence fails to offer compelling evidence
for heterogeneity in the radar properties of Castalia’s  surface.
Large-scale (> 100-m) variations in near-surface bulk density
or roughness therefore seem unlikely (12).

Our reconstruction shows Castalia to bc a strongly bifur-
cated body whose convex hull has maximum dimensions 0.7 x
1.0 x 1.6 km (Figs. 3, 4). q’he asteroid’s prominent waist has
a typical depth between 100 and 150 m with respect to the
object’s convex hull.  The depth and sharpness of the waist
support the hypothesis (9) that at one time the lobes were
separate and that the current “contact-binary” configuration
resulted from a relative] y gentle collision.

Our Gstalia model is distinctly nonconvcx and noncllip-
soidal.  Its volume (0.68 km3) is 10% less than that of its
convex hull and its rms radial deviation from that hull (aver-
aged over all 0, # and normalized to the model’s mean radius
of 0.50 k~n) is Arhull = IO!ZO. The model’s deviation from
its best triaxial-ellipsoidal  approximation,  Arelt  = 14Y0, ex-
cecds the corresponding value, 11$10, for the mainbclt asteroid
951 Gaspra  (19) which deviates more from an ellipsoid than
Phobc,s, Deimos,  a n y  o t h e r  p l a n e t a r y  s a t e l l i t e  o b s e r v e d  by

spacecraft or any asteroid for which stellar-occultation limb
]Jrofiles  arc available (14). Therefore Gstalia, the smal]cst
planetary object imaged so far, is also the most irregularly
shaped. The individual lobes, labeled alpha and beta in Fig.
4, have mean  radii equal to 0.46 and 0.40 km and Ar,ll equal
to 11% and 12%.

‘1’hc  only fundamental limitations on the rcso]ution  of a
shape rcconstru  ction from radar images are the delay-I)opplcr
rmolution,  oricntational coverage, and sign al-to noise ratio of
those images. At present, the Arecibo  and Goldstonc  radars
can achicvc resolution an order of magnitude finer than t}lat
of the Castalia data. By 1995, compaction of instrumenta-
tion upgrades now underway should allow useful imaging and
reconstruction of several of the currently known ECAS pcr
year.
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FIGURE  CAPTIONS
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{A) PcIcentage  incre=e  of X2 over its minimum value as a
function of subradar latitude 1$1 for estimations using the one-
component model. The least-squares estimate, 35°, defines
the locus of possible pole directions as a cone with axis parallel
to the radar line of sight (right ascension = 0.30 h, declination
== 25.4°) and interior half angle 55° (15).  Shape models for 16{
equal to 30° and 40° look similar to that for 161 = 35°, whereas
the respective models for 25° and 45° are noticeably smaller
and larger. The inverse correlation between size and 161  stems
from Eqn. 1, and the increase in X2 away from 35° reflects the
pressure that the echoes’ delay dispersion exerts on estimation
of the model’s size. Based on our understanding of these
results and numerous simulations, we assign an intentionally
conservative standaId error of 4cIO” to our estimate of 161.
(B)  Percentage increase of X2 over its minimum value as a
function of the concavity penalty factor @C for estimations
with the one-component model. (C) Percentage increase of X2
over its minimum value as a function of the proximity penalty
factor ~~ for estimations with the tw~component  model.

(A) Plane-of-sky views of models corresponding to flc =
3.0,4.0,4.5,5.0. Views are at subradar latitude 6 = 35” and
rotation phases of @ w 53° (top row) and ~J * 157° (bot-
tom row), corresponding to frames 16 and 45 in Fig. 3 of (3).
Models are rendered with a Lambertian (n = 2) scattering
law, X2 is essentially insensitive to ~c <3, has increased by
2% at ~C = 4, and rises steeply thereafter. Much bumpiness
is smoothed out as we raise PC from 3 to 4, but the waist re-
mains intact. We take the PC = 4 model to represent a lower
bound on Caatalia’s bifurcation. @) Plane-of-sky views of
models corresponding to BD = 5.0,5.4,5.8,6.0. Orientations
and scattering law arc the same as. in (A). X2 is essentially ,’
insensitive to /?n ~ 5, has increased by 2% at fix> = 5,4,
and rises steeply thereafter. We take the f?~ = 5.4 model to
represent an upper bound on Castalia’s  bifurcation.

Plane-of-sky views of the nominal nlodel of C&stalia  at sub-
radar latitude 6 = 35° and rotation phass q! = 0° to 220° in
steps of 20°. Lobe alpha (see Fig. 4) is between the viewer and
lobe beta at t/) = 60°, The Lambertian scattering law used for
this rendering and in Fig. 2 is somewhat less specular than
the radar scattering law estimated in our reconstruction and
much more specular than optical scattering laws thought to
characterize uteroids.

Perspectives showing projections of the nominal C~stalia
model (thick solid curve), the lower-bound model (d~hed
curve), and the upper-bound model (thin solid ,curve). (A)
Pole-on view of model silhouettes. The spin axis is denoted
by the dot in lobe alpha. Arrows radiating from that dot
point toward the radar at rotational phases tj = 0°,60°, ]50°,
and 220°; the radar data u(7,  v; +) cover phases from 0° to

220°. (II) ‘Broadside” vjew from within the equatorial plane
at @ = 150”.  (C) ‘End-on” views from within the equatorial
plane at r/, = 60°. (D)  Cross-sections corresponding to the
dotted-line slice through the pole-on view. The dotted verti-
cal lines in (B), (C), and (D) represent the spin axis. Each
quadrant is a 2 x 2 km square and the tic marks are at 0.2-
km intervals. The curve defined by the intersection of the two
lobes in the nominal model is nonplanar. ‘I’he rms deviation
of that curve from its best-fit plane is 0.16 km. That plane
lies 0,17 km from the nominal model’s center of mass along a
]inc that points towards (r/J, 6) = (241°, 80).
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